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Abstract We study repeated interactions of the quantized electromagnetic field in a cavity
with single two-levels atoms. Using the Markovian nature of the resulting quantum evolu-
tion we study its large time asymptotics. We show that, whenever the atoms are distributed
according to the canonical ensemble at temperature T > 0 and some generic non-degeneracy
condition is satisfied, the cavity field relaxes towards some invariant state. Under some more
stringent non-resonance condition, this invariant state is thermal equilibrium at some renor-
malized temperature T ∗. Our result is non-perturbative in the strength of the atom-field
coupling. The relaxation process is slow (non-exponential) due to the presence of infinitely
many metastable states of the cavity field.

Keywords Thermal relaxation · Completely positive maps · One-atom maser ·
QED cavity · Repeated interactions · Rabi oscillations

1 Introduction

Open Systems During the last years there has been a growing interest for the rigorous
development of the quantum statistical mechanics of open systems. Such a system consists
in a confined subsystem S in contact with an environment made of one or several extended
subsystems R1, . . . usually called reservoirs. We refer the reader to [9] and in particular to
the review article [4] for a modern introduction to the subject.
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Two different approaches have been used to study open systems: Hamiltonian and
Markovian. The first one is fundamental. It is based on a complete description of the micro-
scopic dynamics of the coupled system S + R1 + · · ·. One uses traditional tools of quantum
mechanics—spectral analysis and scattering theory – to study this dynamics. So far, most
results obtained in this way are perturbative in the system-reservoir coupling and, for techni-
cal reasons, limited to small systems S described by a finite dimensional Hilbert space (e.g.,
N -level atoms).

In the Markovian approach, one gives up the microscopic description of the reservoirs
and tries to describe directly the effective dynamics of the “small” system S under the in-
fluence of its environment. This evolution is governed by a quantum master equation which
defines a semi-group of completely positive, trace preserving maps on the state space of S
(see Definition 4.1 below). There are two ways to justify such a Markovian dynamics: as
a scaling limit of the microscopic dynamics of the coupled system S + R1 + · · · (e.g., the
van Hove weak coupling limit [20, 21, 23, 25]), or as the result of driving the system S with
stochastic forces (quantum Langevin equation [31]).

Equilibrium vs. Nonequilibrium When the environment is in thermal equilibrium, the ba-
sic problem is thermal relaxation: does the small subsystem S return to a state of thermal
equilibrium? In the cases when S has a finite dimensional Hilbert space and the environment
consists of an ideal quantum gas, this question has been extensively investigated in [10, 24,
28, 32].

Open systems become more interesting when their environment is not in thermal equi-
librium. Suppose for example that S is brought into contact with several reservoirs, each of
them being in a thermal equilibrium state but with different intensive thermodynamic para-
meters. Then one expects the joint system S + R1 + · · · to relax towards a non-equilibrium
steady states (NESS). Such states have been constructed in [2, 3, 18, 19, 33, 41, 44, 47]. They
carry currents, have non vanishing entropy production rate, . . . . These transport properties
were investigated in [5, 17, 29, 43]. The linear response theory (Green-Kubo formula, On-
sager reciprocity relations, central limit theorem) was developed in [29, 34–38]. Moreover,
current fluctuations and related problems (Evans-Searles and Gallavotti-Cohen symmetries)
were studied in [22, 26, 50].

Repeated Interactions Motivated by several new physical applications as well as by their
attractive mathematical structure, a class of open systems has recently become very popular
in the literature: repeated interaction (RI) systems. There, the environment consists in a
sequence E1, E2, . . . of independent subsystems. The “small” subsystem S interacts with E1

during the time interval [0, τ1[, then with E2 during the interval [τ1, τ1 + τ2[, etc. While S
interacts with Em, the other elements of the sequence evolve freely according to their intrinsic
(uncoupled) dynamics. Thus, the evolution of the joint system S + E1 + · · · is completely
determined by the sequence τ1, τ2, . . ., the individual dynamics of each Em and the coupled
dynamics of each pair S + Em.

In the simplest RI models each Em is a copy of some E , τm ≡ τ , and the dynamics of Em

and S + Em are independent of m, generated by some Hamiltonians HE , HS E . Such models
have been analyzed in [14, 55] (see also [15] for a random setting). It was shown in [14] that
the RI dynamics gives rise to a Markovian effective dynamics on the system S and drives
the latter to an asymptotic state, at an exponential rate (provided S has a finite dimensional
Hilbert space). The limit τ → 0 with appropriate rescaling of the interaction Hamiltonian
HS E was studied in [7, 8]. In this scaling limit, RI systems become continuous interaction
systems and the effective dynamics on S converges towards a continuous semigroup of
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completely positive maps associated with a quantum Langevin equation. Related results
pertaining to various other scaling limits of RI systems have also been investigated in [6]
with similar results.

Due to their particular structure, RI systems are both Hamiltonian (with a time-dependent
Hamiltonian) and Markovian (the effective dynamics of S is described by a discrete semi-
group of completely positive maps, see Sect. 2.2 for the precise meaning of this statement).
For that reason, we believe that these models provide a useful framework to develop our
understanding of various aspects of the quantum statistical mechanics of open systems.

In the physical paradigm of a RI system, S is the quantized electromagnetic field of a
cavity through which a beam of atoms, the Em, is shot in such a way that no more than one
atom is present in the cavity at any time. Such systems play a fundamental role in the ex-
perimental and theoretical investigations of basic matter-radiation processes. They are also
of practical importance in quantum optics and quantum state engineering [42, 46, 53–55].
So-called “One-Atom Masers”, where the beam is tuned in such a way that at each given
moment a single atom is inside a microwave cavity and the interaction time τ is the same
for each atom, have been experimentally realized in laboratories [42, 54].

In this paper we start the mathematical analysis of a specific model of RI system describ-
ing the one-atom maser experiment mentioned above (a precise description of the model
is given in Sect. 2). We consider here the first natural question, namely that of thermal re-
laxation: is it possible to thermalize a mode of a QED cavity by means of 2-level atoms if
the latter are initially at thermal equilibrium? The non-equilibrium situation (NESS, entropy
production, fluctuation symmetries) will be considered in [13]. We would like to emphasize
that in our situation the Hilbert space of the small system S is not finite dimensional. More-
over, we do not make use of any perturbation theory, i.e., our results do not restrict to small
coupling constants.

The paper is organized as follows: The precise description of the model is given in Sect. 2
and the main results are stated and discussed in Sect. 3. Proofs will be found in Sect. 4.

2 Description of the Model

2.1 The Jaynes–Cummings Atom–Field Dynamics

We consider the situation where atoms of the beam are prepared in a stationary mixture of
two states with energies E0 < E1 and we assume the cavity to be nearly resonant with the
transitions between these two states. Neglecting the non-resonant modes of the cavity, we
can describe its quantized electromagnetic field by a single harmonic oscillator of frequency
ω � ω0 ≡ E1 − E0.

The Hilbert space for a single atom is HE ≡ C
2 which, for notational convenience, we

identify with �−(C), the Fermionic Fock space over C. Without loss of generality we set
E0 = 0. The Hamiltonian of a single atom is thus

HE ≡ ω0b
∗b,

where b∗, b denote the creation/annihilation operators on HE . Stationary states of the atom
can be parametrized by the inverse temperature β ∈ R and are given by the density matrices
ρ

β
E ≡ e−βHE /Tr e−βHE .

The Hilbert space of the cavity field is HS ≡ �2(N) = �+(C), the Bosonic Fock space
over C. Its Hamiltonian is

HS ≡ ωN ≡ ωa∗a,
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where a∗, a are the creation/annihilation operators on HS satisfying the commutation rela-
tion [a, a∗] = I . Normal states of S are density matrices, positive trace class operators ρ on
HS with Trρ = 1. We will use the notation ρ(A) ≡ Tr(ρA) for A ∈ B(HS ). These are the
only states we shall consider on S . Therefore, in the following, “state” always means “nor-
mal state” or equivalently “density matrix”. Moreover, we will say that a state is diagonal if
it is represented by a diagonal matrix in the eigenbasis of HS .

In the dipole approximation, an atom interacts with the cavity field through its electric
dipole moment. The full dipole coupling is given by (λ/2)(a + a∗) ⊗ (b + b∗), acting on
HS ⊗ HE , where λ ∈ R is a coupling constant. Neglecting the counter rotating term a ⊗ b +
a∗ ⊗ b∗ in this coupling (this is the so called rotating wave approximation) leads to the well
known Jaynes-Cummings Hamiltonian

H ≡ HS ⊗ 1E + 1S ⊗ HE + λV, V ≡ 1

2
(a∗ ⊗ b + a ⊗ b∗), (2.1)

for the coupled system S + E (see e.g., [11, 16, 27]). The operator H has a distinguished
property which allows for its explicit diagonalisation: it commutes with the total number
operator

M ≡ a∗a + b∗b. (2.2)

An essential feature of the dynamics generated by H are Rabi oscillations. In the presence
of n photons, the probability for the atom to make a transition from its ground state to its
excited state is a periodic function of time. The circular frequency of this oscillation is given
by
√

λ2n + (ω0 − ω)2, a fact easily derived from the propagator formula (4.2) below. Thus,
in our units, λ is the one photon Rabi-frequency of the atom in a perfectly tuned cavity.

The rotating wave approximation, and thus the dynamics generated by the Jaynes-
Cummings Hamiltonian, is known to be in good agreement with experimental datas as long
as the detuning parameter 	 ≡ ω − ω0 satisfies |	| � min(ω0,ω) and the coupling is small
|λ| � ω0. However, we are not aware of any mathematically precise statement about this
approximation.

2.2 Repeated Interaction Dynamics

Given an interaction time τ > 0, the system S successively interacts with different copies of
the system E , each interaction having a duration τ . The issue is to understand the asymptotic
behavior of the system S when the number of such interactions tends to +∞ (which is
equivalent to time t going to +∞). The Hilbert space describing the entire system S + C
then writes

H ≡ HS ⊗ HC, HC ≡
⊗

n≥1

HEn ,

where HEn are identical copies of HE . During the time interval [(n − 1)τ, nτ), the system
S interacts only with the n-th element of the chain. The evolution is thus described by the
Hamiltonian Hn which acts as H on HS ⊗ HEn and as the identity on the other factors HEk

.

Remark A priori we should also include the free evolution of the non-interacting elements
of C . However, since we shall take the various elements of C to be initially in thermal equi-
librium, this free evolution will not play any role.
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Given any initial state ρ on S and assuming that all the atoms are in the stationary
state ρ

β
E , the state of the total repeated interaction system after n interactions is thus given

by

e−iτHn · · · e−iτH1

(
ρ ⊗

⊗

k≥1

ρ
β

E

)
eiτH1 · · · eiτHn .

To obtain the state ρn of the system S after these n interactions we take the partial trace over
the chain C , i.e.,

ρn = TrH C

[
e−iτHn · · · e−iτH1

(
ρ ⊗

⊗

k≥1

ρ
β

E

)
eiτH1 · · · eiτHn

]
. (2.3)

It is easy to make sense of this formal expression (we deal here with countable tensor prod-
ucts). Indeed, at time nτ only the n first elements of the chain have played a role so that we
can replace

⊗
k≥1 ρ

β
E by ρ

β (n)
E ≡⊗n

k=1 ρ
β

E and the partial trace over the chain by the partial

trace over the finite tensor product H(n)
C ≡⊗n

k=1 HEk
.

The very particular structure of the repeated interaction systems allows us to rewrite ρn

in a much more convenient way. The two main characteristics of these repeated interaction
systems are:

1. The various elements of C do not interact directly (only via the system S ),
2. The system S interacts only once with each element of C , and with only one at any time.

It is therefore easy to see that the evolution of the system S is Markovian: the state ρn only
depends on the state ρn−1 and the n-th interaction. More precisely, one can write (see also
[6, 14])

ρn = TrH(n)
C

[
e−iτHn · · · e−iτH1

(
ρ ⊗ ρ

β (n)
E
)
eiτH1 · · · eiτHn

]

= TrH En

[
e−iτHn

(
TrH(n−1)

C

[
e−iτHn−1 · · · e−iτH1

(
ρ ⊗ ρ

β (n−1)
E

)
eiτH1 · · · eiτHn−1

]⊗ ρ
β

E
)
eiτHn

]

= TrH En

[
e−iτHn

(
ρn−1 ⊗ ρ

β
E
)
eiτHn

]
,

that is

ρn = Lβ(ρn−1),

with

Lβ(ρ) ≡ TrH E

[
e−iτH

(
ρ ⊗ ρ

β
E
)
eiτH

]
. (2.4)

Definition 2.1 The map Lβ defined on the set J1(HS ) of trace class operators on HS by
(2.4) is called the reduced dynamics. The state of S evolves according to the discrete semi-
group {Ln

β |n ∈ N} generated by this map:

ρn = Ln
β(ρ).

In particular, a state ρ is invariant iff Lβ(ρ) = ρ.

Note that Lβ is clearly a contraction. To understand the asymptotic behavior of ρn, we
shall study its spectral properties. In particular, we will be interested in its peripheral eigen-
values eiθ , for θ ∈ R.
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Remark When the atom-field coupling is turned off, the reduced dynamics is nothing but
the free evolution of S , i.e., Lβ(ρ) = e−iτHS ρeiτHS . Note that J1(HS ) =⊕d∈Z

J (d)

1 (HS )

where each subspace

J (d)

1 (HS ) ≡ {X ∈ J1(HS ) | e−iθNXeiθN = eiθdX for all θ ∈ R}, (2.5)

is infinite dimensional (it is the set of bounded operators X which, in the canonical basis of
HS = �2(N), have a matrix representation Xnm = xn δn+d,m with

∑
n≥0 |xn| < ∞). Thus, for

λ = 0, the spectrum of Lβ is pure point

sp(Lβ) = sppp(Lβ) = {eiτωd |d ∈ Z}.
This spectrum is finite if τω ∈ 2πQ and densely fills the unit circle in the opposite case. In
both cases, all the eigenvalues (and in particular 1) are infinitely degenerate. This explains
why perturbation theory in λ fails for this model.

3 Results

To formulate our main results we need a notion of Rabi resonance. Such a resonance occurs
when the interaction time τ is an integer multiple of the period of a Rabi oscillation. Here
and in the following we will use the dimensionless detuning parameter and coupling constant

η ≡
(

	τ

2π

)2

, ξ ≡
(

λτ

2π

)2

,

to parametrize our model.

Definition 3.1 Let n be a positive integer. We shall say that n is a Rabi resonance if

ξn + η = k2, (3.1)

for some positive integer k and denote by R(η, ξ) the set of Rabi resonances.

The following elementary lemma (see Sect. 4.10 for a discussion) shows that, depending
on η and ξ , the system has either no, one or infinitely many Rabi resonances. We shall
say accordingly that it is non-resonant, simply resonant or fully resonant. A fully resonant
system will be called degenerate if there exist n ∈ {0} ∪ R(η, ξ) and m ∈ R(η, ξ) such that
n < m and n + 1,m + 1 ∈ R(η, ξ).

Lemma 3.2 1. If η and ξ are both irrational then the system can be either non-resonant or
simply resonant.

2. If one of them is rational and the other not, then the system is non-resonant.
3. If they are both rational, write their irreducible representations as η = a/b, ξ = c/d ,

denote by m the least common multiple of b and d and set

X ≡ {x ∈ {0, . . . , ξm − 1} |x2m � ηm(mod ξm)}.
The system is non-resonant if X is empty. In the opposite case it is fully resonant and

R(η, ξ) = {(k2 − η)/ξ |k = jmξ + x, j ∈ N, x ∈ X} ∩ N
∗.
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4. A necessary condition for the system to be degenerate is that both ξ and η be integers
such that η > 0 is a quadratic residue modulo ξ , i.e., there exists an integer y such that
η = y2 modulo ξ .

The Hilbert space HS has a decomposition

HS =
r⊕

k=1

H(k)
S , (3.2)

where r − 1 is the number of Rabi resonances, H(k)
S ≡ �2(Ik) and {Ik |k = 1, . . . , r} is the

partition of N induced by the resonances. More precisely we set

I1 ≡ N if R(η, ξ) is empty,

I1 ≡ {0, . . . , n1 − 1}, I2 ≡ {n1, n1 + 1, . . .} if R(η, ξ) = {n1},
I1 ≡ {0, . . . , n1 − 1}, I2 ≡ {n1, . . . , n2 − 1}, . . . if R(η, ξ) = {n1, n2, . . .}.

We shall say that H(k)
S is the k-th Rabi sector, denote by Pk the corresponding orthogonal

projection and set lk ≡ dim H(k)
S .

Thermal relaxation is an ergodic property of the map Lβ and of its invariant states. For
any density matrix ρ, we denote the orthogonal projection on the closure of Ranρ by s(ρ),
the support of ρ. We also write μ � ρ whenever s(μ) ≤ s(ρ).

A state ρ is ergodic (respectively mixing) for the semigroup generated by Lβ whenever

lim
N→∞

1

N

N∑

n=1

(
Ln

β(μ)
)
(A) = ρ(A), (3.3)

(respectively)

lim
n→∞

(
Ln

β(μ)
)
(A) = ρ(A), (3.4)

holds for all states μ � ρ and all A ∈ B(HS ). ρ is exponentially mixing if the convergence
in (3.4) is exponential, i.e., if

∣∣(Ln
β(μ)

)
(A) − ρ(A)

∣∣≤ CA,μ e−αn,

for some constant CA,μ which may depend on A and μ and some α > 0 independent of A

and μ. A mixing state is ergodic and an ergodic state is clearly invariant.
A state ρ is faithful iff ρ > 0, that is s(ρ) = I . Thus, if ρ is a faithful ergodic (resp.

mixing) state the convergence (3.3) (resp. (3.4)) holds for every state μ and one has global
relaxation. In this case, ρ is easily seen to be the only ergodic state of Lβ . Conversely, one
can show (see Theorem 4.4) that if Lβ has a unique faithful invariant state, this state is
ergodic.

We need some notations to formulate our main result. For β ∈ R we set β∗ ≡ βω0/ω and
to each Rabi sector H(k)

S we associate the state

ρ
(k)β∗

S ≡ e−β∗HS Pk

Tr e−β∗HS Pk

= e−βω0NPk

Tr e−βω0NPk

.
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Theorem 3.3 1. If the system is non-resonant then Lβ has no invariant state for β ≤ 0 and
the unique ergodic state

ρ
β∗

S = e−β∗HS

Tr e−β∗HS

for β > 0. In the latter case any initial state relaxes in the mean to the thermal equilibrium
state at inverse temperature β∗.

2. If the system is simply resonant then Lβ has the unique ergodic state ρ
(1)β∗

S if β ≤ 0

and two ergodic states ρ
(1)β∗

S , ρ
(2)β∗

S if β > 0. In the latter case, for any state μ, one has

lim
N→∞

1

N

N∑

n=1

(
Ln

β(μ)
)
(A) = μ(P1) ρ

(1)β∗
S (A) + μ(P2) ρ

(2)β∗
S (A), (3.5)

for all A ∈ B(HS ).
3. If the system is fully resonant then for any β ∈ R, Lβ has infinitely many ergodic states

ρ
(k)β∗

S , k = 1,2, . . . . Moreover, if the system is non-degenerate,

lim
N→∞

1

N

N∑

n=1

(
Ln

β(μ)
)
(A) =

∞∑

k=1

μ(Pk)ρ
(k)β∗

S (A), (3.6)

holds for any state μ and all A ∈ B(HS ).
4. If the system is non-degenerate, any invariant state is diagonal and can be represented

as a convex linear combination of ergodic states, i.e., the set of invariant states is a simplex.

Remarks 1. Notice the renormalization β → β∗ of the equilibrium temperature when the
detuning parameter η in non-zero.

2. In the non-degenerate cases, our result implies some weak form of decoherence in the
energy eigenbasis of the cavity field: the time averaged off-diagonal part of the state Ln

β(μ)

decays with time.
3. Assertion 4 shows in particular that in the non-degenerate cases an ergodic decom-

position theorem holds. Note that, in contrast with classical dynamical systems, this is not
necessarily the case for quantum systems.

4. If the system is degenerate, (3.6) and the conclusions of Assertion 4 still hold provided
a further non-resonance condition is satisfied. Namely, we will show that there is a finite non-
empty set D ⊂ N

∗ such that the peripheral eigenvalues of Lβ with non-diagonal eigenvectors
are given by ei(τω+ξπ)d , d ∈ D (see Lemma 4.6 below for details). If ei(τω+ξπ)d �= 1 for all
d ∈ D, none of these eigenvalue equals 1 and all eigenvectors of Lβ to the eigenvalue 1 are
diagonal.

The following result brings some additional information on the relaxation process in
finite dimensional Rabi sectors.

Theorem 3.4 Whenever the state ρ
(k)β∗

S is ergodic it is also exponentially mixing if the
sector H(k)

S is finite dimensional.

Remark Numerical experiments support the conjecture that all the ergodic states are mix-
ing. However, our analysis does not provide a proof of this conjecture if H(k)

S is infinite
dimensional. In fact, we will see in Sect. 4.5 that Lβ has an infinite number of metastable
states in the non-resonant and simply resonant cases. As a result, we expect slow (i.e., non-
exponential) relaxation (see Paragraph 4.5.4 for illustrations).
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4 Proofs

4.1 Preliminaries

The map Lβ acts on the set of density matrices on HS , but its definition (2.4) obviously ex-
tends to the space J1(HS ) of trace class operators on HS . Let us first recall some definitions
and important results concerning linear maps on trace ideals (we refer to [40, 48, 49] for
detailed expositions).

Definition 4.1 Let φ : J1(H) → J1(H) be a linear map.

1. φ is positive if it leaves the cone J1+(H) of positive trace class operators invariant.
2. φ is n-positive if the extended maps φ ⊗ I acting on J1(H) ⊗ B(Cn) is positive.
3. φ is completely positive (CP) if it is n-positive for all n ∈ N.
4. φ is trace preserving if Tr(φ(ρ)) = Tr(ρ) for any ρ ∈ J1(H).

Given a linear map φ on J1(H), we denote by r(φ) its spectral radius sup{|z| | z ∈ sp(φ)}
which, by a result of Gelfand [30], is equal to limn→∞ ‖φn‖1/n.

Theorem 4.2 Let φ be a positive map on J1(H).

1. φ is bounded.
2. If φ is CP there exists an at most countable family (Vi)i∈J of bounded operators on H

such that

0 ≤
∑

i∈J ′
V ∗

i Vi ≤ I,

for any finite J ′ ⊂ J and

φ(ρ) =
∑

i∈J

Vi ρV ∗
i , (4.1)

for any ρ ∈ J1(H).
3. If φ is CP and trace preserving then r(φ) = ‖φ‖ = 1.

A decomposition (4.1) of a CP map is called a Kraus representation. Such a representa-
tion is not necessarily unique.

The following result due to Schrader ([48], Theorem 4.1) is our main tool for the spectral
analysis of Lβ .

Theorem 4.3 Let φ be a 2-positive map on J1(H) such that r(φ) = ‖φ‖. If λ is a peripheral
eigenvalue of φ with eigenvector X, i.e., φ(X) = λX, X �= 0, |λ| = r(φ), then |X| is an
eigenvector of φ to the eigenvalue r(φ): φ(|X|) = r(φ)|X|.

Finally, the following theorem reduces the problem of thermal relaxation “in the mean”
(in the sense of (3.3)) to the existence and uniqueness of a faithful invariant state.

Theorem 4.4 Let φ be a CP trace preserving map on J1(H). If φ has a faithful invariant
state ρstat and 1 is a simple eigenvalue of φ then ρstat is ergodic.

This result is most probably known, at least for strongly continuous semigroups of CP
trace preserving maps. Since we are not aware of any reference in the discrete case we
provide a proof in Sect. 4.9.
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4.2 Strategy

Using Theorem 4.2, the following proposition follows directly from the definition (2.4)
of Lβ .

Proposition 4.5 Lβ is a completely positive, trace preserving map on J1(HS ). In particular
one has r(Lβ) = ‖Lβ‖ = 1.

In order to prove Theorems 3.3 and 3.4 we will derive an explicit Kraus representation of
Lβ in Sect. 4.3. In Sect. 4.4 we will show that Lβ leaves the subspaces J (d)

1 (HS ) invariant.
Using the Kraus representation of Lβ we will then derive a convenient formula for its action
on the subspace J (0)

1 (HS ) of diagonal matrices. With this formula we will construct all
diagonal invariant states in Sect. 4.5. Investigating the block structure of Lβ associated to
Rabi sectors (Sect. 4.6) will allow us to invoke Theorem 4.3 in Sect. 4.7. In this way we
reduce the peripheral eigenvalue problem Lβ(X) = eiθX, θ ∈ R, to diagonal matrices. In
Sect. 4.8 the result of this analysis will allow us to conclude the proof.

4.3 Kraus Representation of Lβ

Denote by |−〉 and |+〉 the ground state and the excited state of the atom E . This orthonormal
basis of HE allows us to identify H = HS ⊗ HE with HS ⊕ HS . Using the fact that H

commutes with the total number operator M (recall (2.2)), an elementary calculation shows
that, in this representation, the unitary group e−iτH is given by

e−iτH =
(

e−i(τωN+πη1/2) C(N) −ie−i(τωN+πη1/2)S(N)a∗

−ie−i(τω(N+1)+πη1/2)S(N + 1) a e−i(τω(N+1)+πη1/2) C(N + 1)∗

)

, (4.2)

where

C(N) ≡ cos(π
√

ξN + η) + iη1/2 sin(π
√

ξN + η)√
ξN + η

,

S(N) ≡ ξ 1/2 sin(π
√

ξN + η)√
ξN + η

,

with the convention sin(0)/0 = 1 to avoid any ambiguity in the case η = 0. Let wβ(σ) ≡
〈σ |ρβ

E |σ 〉 = (1 + eσβω0)−1 denote the Gibbs distribution of the atoms. The defining identity
(2.4) yields

Lβ(ρ) =
∑

σ,σ ′
〈σ ′|e−iτH |σ 〉wβ(σ)ρ〈σ |eiτH |σ ′〉 =

∑

σ,σ ′
Vσ ′σ ρV ∗

σ ′σ , (4.3)

where the operators Vσ ′σ are given by

V−− = wβ(−)1/2 e−iτωN C(N), V−+ = wβ(+)1/2 e−iτωN S(N)a∗,

V+− = wβ(−)1/2 e−iτωN S(N + 1) a, V++ = wβ(+)1/2 e−iτωN C(N + 1)∗.
(4.4)

The above formulas give us an explicit Kraus representation of the CP map Lβ .
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4.4 Action of Lβ on Diagonal States

Using the facts that [H,M] = [HE , ρ
β

E ] = 0, one easily shows from the definition (2.4) that

Lβ(e−iθNXeiθN ) = e−iθN Lβ(X)eiθN ,

holds for any X ∈ J1(HS ) and θ ∈ R. This is of course also evident from the above Kraus
representation of Lβ . However, it is not clear there what properties of the system are re-
sponsible for this invariance. It follows that Lβ leaves the subspaces J (d)

1 (HS ) (see (2.5))
invariant, and hence admits a decomposition

Lβ =
⊕

d∈Z

L(d)
β . (4.5)

We shall be particularly interested in the action of Lβ on diagonal matrices, i.e., in L(0)
β .

To understand why, note that if ρ ∈ J1(HS ) is an invariant state then ρ ≥ 0, Tr(ρ) = 1 and
Lβ(ρ) = ρ. It follows from (4.5) that its diagonal part ρ(0) ∈ J (0)

1 (HS ) satisfies ρ(0) ≥ 0,
Tr(ρ(0)) = 1 and L(0)

β (ρ(0)) = ρ(0), i.e., ρ(0) is also an invariant state. The problem of exis-
tence of an invariant state therefore completely reduces to the existence of the eigenvalue 1
of L(0)

β .

Denoting by xn the diagonal elements of X ∈ J (0)

1 (HS ), we can identify J (0)

1 (HS ) with
�1(N). The Kraus representation derived in the previous subsection immediately yields

(L(0)
β x)n = 1

1 + e−βω0

[(
cos2(π

√
ξn + η) + e−βω0 cos2(π

√
ξ(n + 1) + η)

)
xn

+ sin2(π
√

ξn + η)

ξn + η

(
ηxn + e−βω0ξnxn−1

)

+ sin2(π
√

ξ(n + 1) + η)

ξ(n + 1) + η

(
e−βω0ηxn + ξ(n + 1)xn+1

)]
.

To rewrite this expression in a more convenient form let us introduce the number operator

(Nx)n ≡ nxn,

as well as the finite difference operators

(∇x)n ≡
⎧
⎨

⎩

x0 for n = 0,

(∇∗x)n ≡ xn − xn+1 (for n ≥ 0),

xn − xn−1 for n ≥ 1,

on �1(N). A simple algebra then leads to

L(0)
β = I − ∇∗D(N)e−βω0N∇eβω0N, (4.6)

where

D(N) ≡ 1

1 + e−βω0
sin2(π

√
ξN + η)

ξN

ξN + η
. (4.7)
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4.5 Diagonal Invariant States

We are now in position to determine all the diagonal invariant states and more generally
all eigenvectors of L(0)

β to the eigenvalue 1. Setting u = e−βω0N∇eβω0Nρ and using for-
mula (4.6), we can rewrite the eigenvalue equation as

∇∗D(N)u = 0.

Since ∇∗ is clearly injective, this means D(N)u = 0 and hence un = 0 unless D(n) = 0,
that is n is a Rabi resonance. At this stage, we have to distinguish 3 cases.

4.5.1 The Non-resonant Case

If the system is non-resonant, it follows from (4.7) that D(n) = 0 if and only if n = 0 and
hence our eigenvalue equation reduces to

un = ρn − e−βω0ρn−1 = 0,

for n ≥ 1. We conclude that there is a unique diagonal invariant state

e−βω0N

Tr e−βω0N
= ρ

β∗
S = ρ

(1)β∗
S ,

if β > 0 and none if β ≤ 0.

4.5.2 The Simply Resonant Case

If the system is simply resonant there exists n1 ∈ N
∗ such that D(n) = 0 if and only if n = 0

or n = n1. The eigenvalue equation then splits into two decoupled systems

ρn = e−βω0ρn−1, n ∈ I1 ≡ {1, . . . , n1 − 1},
ρn = e−βω0ρn−1, n ∈ I2 ≡ {n1 + 1, . . .}.

The first one yields the invariant state

e−βω0NP1

Tr e−βω0NP1
= ρ

(1)β∗
S ,

for any β ∈ R. The second system gives another invariant state

e−βω0NP2

Tr e−βω0NP2
= ρ

(2)β∗
S ,

provided β > 0.

4.5.3 The Fully Resonant Case

If the system is fully resonant D(n) has an infinite sequence n0 = 0 < n1 < n2 < · · · of zeros.
The eigenvalue equation now splits into an infinite number of finite dimensional systems

ρn = e−βω0ρn−1, n ∈ Ik ≡ {nk−1 + 1, . . . , nk − 1},
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where k = 1,2, . . . . For any β ∈ R, we thus have an infinite number of invariant states

e−βω0NPk

Tr e−βω0NPk

= ρ
(k)β∗

S ,

one for each Rabi sector.

4.5.4 Metastable States

If the system is non-resonant we say that m ∈ N
∗ is a Rabi quasi-resonance if it satisfies

D(m) < D(m ± 1). Let (mk)k∈N∗ be the strictly increasing sequence of quasi-resonances.
It is straightforward to show that D(mk) = O(k−2) as k → ∞. This implies that for large
k the “quasi Rabi sectors” �2({mk, . . . ,mk+1 − 1}) are very weakly coupled. To make this
statement more precise let

D0(n) ≡
{

0 if n ∈ {m1,m2, . . .},
D(n) otherwise,

and L(0)

β,0 ≡ I − ∇∗D0(N)e−βω0N∇eβω0N . One immediately concludes that

L(0)
β = L(0)

β,0 + T , (4.8)

where T is a trace class operator. The above analysis of the fully resonant case shows that 1
is an infinitely degenerate eigenvalue of L(0)

β,0. The corresponding positive eigenvectors

ρ̃
(k)β∗

S = e−βω0NP̃k

Tr e−βω0NP̃k

where P̃k denotes the orthogonal projection onto �2({0, . . . ,mk − 1}), are metastable states
of the system. Because of these almost invariant states, the global relaxation process is ex-
tremely slow in the non-resonant and simply resonant cases. In spectral terms, (4.8) shows
that 1 is always in the essential spectrum of Lβ . It follows that relaxation can not be expo-
nential in infinite dimensional Rabi sectors.

As an illustration, we have computed the evolution of the first metastable state ρ̃
(1)β∗

S and
the relative entropies

Dk(n) ≡ −Ent
(

Ln
β(ρ̃

(1)β∗
S ) | ρ̃(k)β∗

S
)
,

in a typical, non-resonant one-atom maser situation (as described in [54]) with atoms in
equilibrium at room temperature. We recall that the entropy of a state μ relative to the state
ν is defined by

Ent(μ |ν) = Trμ(logμ − logν).

It is a measure of the “distance” between μ and ν and is also called Kullback–Leibler di-
vergence in information theory. Its main property is Ent(μ |ν) ≤ 0 where the equality holds
iff μ = ν. Figure 1 shows Dk(n) as a function of n for k = 2,3, . . . on a log-log scale.
It clearly describes the cascade of Ln

β(ρ̃
(1)β∗

S ) through the sequence of metastable states

ρ̃
(2)β∗

S → ρ̃
(3)β∗

S → ·· · .
Another way to see metastable states in action consists in cooling the cavity with cold

atoms. Figure 2 shows the result of such a calculation. The solid line is the initial state of the
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Fig. 1 The metastable cascade
(notice the log-log scale!)

Fig. 2 Cooling the cavity: 5000
interactions

cavity which we chose to be thermal equilibrium with an average photon number of 22. The
dashed line is the stationary state ρ

β∗
S , thermal equilibrium with an average of 7 photons. The

broken line is the state of the cavity after 5000 interactions. The vertical dashed lines mark
the positions of the Rabi quasi-resonances mk . The picture shows clearly that local equilib-
rium is achieved in each interval [mk,mk+1[: the slope of the broken line agrees with that of
the invariant state on these intervals. However only the first three intervals have reached a
common equilibrium. The average photon number at this stage is still slightly larger than 17.
It requires 50000 interactions for this number to drop under 10. Figure 3 shows the corre-
sponding state of the cavity. A gross picture of the relaxation process is provided by Fig. 4
where the average photon number is plotted against the number of interactions.

4.6 Rabi Resonances and the Block Structure of Lβ

To understand the RI dynamics of Rabi-resonant systems we need to investigate the block
structure of the map Lβ in the presence of r such resonances n1, . . . . The decomposition
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Fig. 3 Cooling the cavity: 50000
interactions

Fig. 4 Cooling the cavity:
average photon number

(3.2) of HS into Rabi sectors induces a decomposition

J1(HS ) =
r⊕

k,p=1

J (k,p)

1 (HS ), J (k,p)

1 (HS ) = Pk J1(HS )Pp = J1(H(p)
S , H(k)

S ), (4.9)

where each term itself decomposes into

J (k,p)

1 (HS ) =
np+1−nk−1⊕

d=np−nk+1+1

J (k,p,d)

1 (HS ), (4.10)

with

J (k,p,d)

1 (HS ) ≡ {X ∈ J (k,p)

1 (HS ) | e−iθNXeiθN = eiθdX for all θ ∈ R}.
It easily follows from the fact that S(n) = 0 for n ∈ R(η, ξ) that

Vσ ′σ Pk = PkVσ ′σ Pk = PkVσ ′σ , V ∗
σ ′σ Pk = PkV

∗
σ ′σ Pk = PkV

∗
σ ′σ ,

hold for any σ , σ ′ and any Rabi projection Pk . Therefore, one has

Pk Lβ(ρ)Pp = Lβ(PkρPp),



1086 L. Bruneau, C.-A. Pillet

i.e., the map Lβ further decomposes into

Lβ =
r⊕

k,p=1

L(k,p)

β , L(k,p)

β =
np+1−nk−1⊕

d=np−nk+1+1

L(k,p,d)

β , (4.11)

where L(k,p,d)

β is the restriction of Lβ to the subspace J (k,p,d)

1 (HS ). It will be useful to
visualize the elements of this subspace as lk × lp matrices (with respect to the canonical
basis of HS ) of the form

X =

⎛

⎜⎜⎜⎜
⎝

0 · · · 0 x1 0 0 · · ·
0 · · · 0 0 x2 0 · · ·
0 · · · 0 0 0 x3 · · ·
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟
⎠

.

Recall that ln is the dimension of the n-th Rabi sector.

4.7 The Peripheral Point Spectrum of Lβ

We have obtained all the diagonal eigenvectors to the eigenvalue 1 of Lβ in the Sect. 4.5.
In this subsection we further investigate the peripheral spectrum of Lβ , more precisely the
eigenvalue problem

Lβ(X) = eiθX, (4.12)

with θ ∈ R. The following lemma shows that in almost all cases the only peripheral eigen-
value is 1 and that all the corresponding eigenvectors are diagonal. In other words, there are
no solutions to (4.12) except for multiples of those obtained in Sect. 4.5.

Lemma 4.6 1. The only peripheral eigenvalue of L(0)
β is 1.

2. If the system is not degenerate, then the only peripheral eigenvalue of Lβ is 1 and the
corresponding eigenvectors are diagonal.

3. If the system is degenerate we denote N(η, ξ) ≡ {n ∈ {0} ∪ R(η, ξ) |n + 1 ∈ R(η, ξ)}
and D(η, ξ) ≡ {d = n − m |n,m ∈ N(η, ξ), n �= m}. In this case the set of peripheral eigen-
values of Lβ is given by

{1} ∪ {ei(τω+ξπ)d |d ∈ D(η, ξ)}.
More precisely, for any k,p ∈ N

∗ such that k �= p one has:

(i) 1 is the only peripheral eigenvalue of L(k,k)
β and the corresponding eigenvectors are

diagonal.
(ii) L(k,p)

β has no peripheral eigenvalue except if nk and np both belong to N(η, ξ) in which
case it has the unique and simple eigenvalue ei(τω+ξπ)d where d = np − nk .

Proof According to the decomposition (4.11) it suffices to consider X ∈ J (k,p,d)

1 (HS ) sat-
isfying (4.12). We note that X∗ ∈ J (p,k,−d)

1 (HS ) then satisfies Lβ(X∗) = e−iθX∗. It fol-
lows from Theorem 4.3 that Y = (X∗X)1/2 ∈ J (p,p,0)

1 (HS ) as well as Z = (XX∗)1/2 ∈
J (k,k,0)

1 (HS ) are positive diagonal eigenvectors of Lβ to the eigenvalue 1.
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If β ≤ 0 and lk = ∞ (respectively lp = ∞) it follows from Sect. 4.5 that Z = 0 (respec-

tively Y = 0) and hence X = 0. In the remaining cases on has Y = λρ
(p)β∗

S and Z = μρ
(k)β∗

S
for some λ,μ ≥ 0. We consider four cases.

Case I: lk �= lp (X is not a square matrix). Without loss of generality (interchanging X

and X∗) we may assume that lk > lp and in particular that lp is finite. Then Z is a diagonal
lk × lk matrix whose rank does not exceed lp . It follows that at least one of its diagonal entry

is zero. Since ρ
(k)β∗

S > 0 we conclude that μ = 0 and hence X = 0.
Case II: lk = lp and d �= np − nk (X is square but not diagonal). In this case we can

assume (again by interchanging X and X∗) that d > np − nk . Then the kernel of X is non-
trivial and we can apply the same argument than in case I.

Case III: lk = lp > 1 and d = np − nk (X is diagonal). In this case we can assume d ≥ 0.
The diagonal elements of X can be written as

xn = μ eiϕn−βω0n, n ∈ {nk, . . . , nk+1 − 1},

for some μ ∈ C and ϕj ∈ R. Assuming μ �= 0 and using the Kraus representation (4.3),
(4.4), the eigenvalue equation (4.12) writes

eiτωd

1 + e−βω0

[(
anan+d + e−βω0an+1an+d+1

)
eiϕn

+ bnbn+deiϕn−1 + e−βω0bn+1bn+d+1eiϕn+1
]= ei(θ+ϕn), (4.13)

for n ∈ {nk, . . . , nk+1 − 1} where

an ≡ C(n), bn ≡ √
nS(n).

One easily checks that |an|2 + |bn|2 = 1. The resonance condition at nk and np = nk + d is
bnk

= bnp = 0 and hence |ank
| = |anp | = 1. Setting z ≡ eβω0 and α ≡ τωd − θ we can recast

(4.13) as

z(An − 1) = 1 − Bn, (4.14)

where

An = eiαanan+d + eiα−i(ϕn−ϕn−1)bnbn+d ,

Bn = eiαan+d+1an+1 + eiα+i(ϕn+1−ϕn)bn+d+1bn+1.

The Cauchy-Schwarz inequality yields ReAn ≤ |An| ≤ 1, ReBn ≤ |Bn| ≤ 1 and hence

Re z(An − 1) ≤ 0, Re(1 − Bn) ≥ 0.

It follows that (4.14) is equivalent to An = Bn = 1. In order for equality to hold in the
Cauchy-Schwarz inequality ReAn ≤ 1, we must have

an+d = eiαan, bn+d = eiα−i(ϕn−ϕn−1)bn. (4.15)

Similarly, to get equality in the inequality ReBn ≤ 1 requires

an+d+1 = e−iαan+1, bn+d+1 = e−iα−i(ϕn+1−ϕn)bn+1. (4.16)
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If d = 0 the first equation in (4.15) and the fact that ank
�= 0 imply eiα = 1. Hence eiθ =

eiτωd = 1 and X is a multiple of the invariant state ρ
(k)β∗

S . We can therefore assume that
d > 0 and hence np > 0. Since bnk+1 �= 0 and bnp+1 �= 0, comparing the second equations in
(4.15) at n = nk + 1 and (4.16) at n = nk allows us to conclude that eiα is real.

We shall now consider separately the two cases η = 0 and η �= 0. In the first case, the first
equation in (4.16) implies

cos2 π
√

ξ(np + 1) = cos2 π
√

ξ(nk + 1)

and therefore
√

ξ(np + 1) + ε
√

ξ(nk + 1) = r, (4.17)

for some ε ∈ {±1} and some integer r > 0. Using the resonance condition

ξnp = q2,

for some integer q > 0, we can rewrite (4.17) as

ε

√
nk + 1

np

= r

q
−
√

np + 1

np

.

Squaring both sides of this equality leads to

nk + 1

np

= r2

q2
+ np + 1

np

− 2r

q

√
np + 1

np

,

which leads to a contradiction since the square root on the right hand side of the last equality
is always irrational.

If η �= 0, rewriting the imaginary part of the first equation in (4.15) as

η1/2 sinπ
√

ξ(n + d) + η√
ξ(n + d) + η

= ±η1/2 sinπ
√

ξn + η√
ξn + η

,

and comparing it with the second equation in (4.15)

√
ξ(n + d)

sinπ
√

ξ(n + d) + η√
ξ(n + d) + η

= ±e−i(ϕn−ϕn−1)
√

ξn
sinπ

√
ξn + η√

ξn + η
,

we get
√

ξ(n + d) = e−i(ϕn−ϕn−1)
√

ξn which contradicts our hypothesis d > 0.
Case IV: lk = lp = 1 and d = np − nk (X is scalar). We follow the same argument as in

case III. Now the second equations in (4.15), (4.16) are trivially satisfied and only the two
equations

anp = eiαank
, anp+1 = e−iαank+1 (4.18)

survive. In the case d = 0 one can conclude, as in case III, that eiθ = 1. We can therefore
assume that d > 0 and np > 0, which means that (nk, nk + 1), (np,np + 1) are two distinct
pairs of consecutive resonances, i.e., that the system is degenerate. In this case, (4.18) are
easily seen to be satisfied with eiθ = (−1)ξdeiτωd . �



Thermal Relaxation of a QED Cavity 1089

Remark Note that N(η, ξ) is a finite set. Indeed, if n ∈ N(η, ξ) there exist positive integers
p and q such that ξn+η = p2 and ξ(n+1)+η = q2. Hence, ξ = q2 −p2 = (q −p)(q +p)

and therefore p ≤ p + q ≤ ξ so that n ≤ ξ2−η

ξ
. As a consequence D(η, ξ) is also a finite set

as we mentioned in Sect. 3. There is some numerical evidence that N(η, ξ) contains at most
two elements, but an analytic proof of this conjecture seems very difficult.

4.8 Ergodicity and Relaxation

4.8.1 Proof of Theorem 3.3

It is now easy to prove that the diagonal invariant states obtained in Sect. 4.5 are ergodic.
Each such state is of the form ρ = ρ

(k)β∗
S for some k and hence its support is a Rabi projec-

tion Pk . Any state μ such that μ � ρ is an element of J (k,k)

1 (HS ) = J1(H(k)
S ). In particular

Lβ(μ) = L(k,k)
β (μ) and it is therefore sufficient to prove ergodicity of ρ with respect to the

semigroup generated by L(k,k)
β . Lemma 4.6 implies that ρ

(k)β∗
S is the unique faithful invariant

state for this semigroup. Ergodicity follows from Theorem 4.4.
1. In the non-resonant case the unique ergodic state ρ

(1)β∗
S = ρ

β∗
S is faithful and hence

one has

lim
N→∞

1

N

N∑

n=0

(
Ln

β(μ)
)
(A) = ρ

β∗
S ,

for all states μ and all A ∈ B(HS ).
2. In the simply resonant cases we shall first consider initial states μ ∈ ⊕|k|≤d J (k)

1 (HS )

for finite d ∈ N. According to (4.9), (4.10), such a state can be decomposed into a finite sum

μ = μ(1,1) ⊕ μ(2,2) ⊕
(

d⊕

j=1

μ(1,2,j)

)

⊕
( −1⊕

j=−d

μ(2,1,j)

)

and hence

Ln
β(μ) = L(1,1) n

β (μ(1,1)) ⊕ L(2,2) n
β (μ(2,2)) ⊕

(
d⊕

j=1

L(1,2,j) n

β (μ(1,2,j))

)

⊕
( −1⊕

j=−d

L(2,1,j) n

β (μ(2,1,j))

)

.

Since the operators L(1,2,j)

β and L(2,1,j)

β act on finite dimensional spaces they have a finite
number of eigenvalues which, by Lemma 4.6, all lie strictly inside the unit disk. It follows
that the corresponding terms in the above sum decay (exponentially) as n → ∞. The first
two terms in this sum can be handled as in the non-resonant case since the two Rabi sectors
H(1)

S and H(2)
S are equipped with unique faithful invariant states ρ

(1)β∗
S and ρ

(2)β∗
S . Therefore,

for any A ∈ B(HS ), we have

lim
N→∞

1

N

N∑

n=0

(
Ln

β(μ)
)
(A) = μ(1,1)(I ) ρ

(1)β∗
S (A) + μ(2,2)(I ) ρ

(2)β∗
S (A), (4.19)
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and (3.5) follows from the fact that μ(k,k)(I ) = μ(Pk). On the left hand side of (4.19) the
Cesàro mean is uniformly continuous in μ (with respect to N ) while the right hand side is
continuous. Equation (4.19) therefore extends by continuity to any state μ in the closure of⋃

d∈N
(
⊕

|k|≤d J (k)

1 (HS )). The next lemma shows that this is all of J1(HS ).

Lemma 4.7 For any state μ there exists a sequence (μk)k∈N in J1+(HS ) such that

μk ∈
⊕

|d|≤k

J (d)

1 (HS )

and limk→∞ μk = μ in J1(HS ).

Proof We first note that θ �→ μ(θ) ≡ e−iθNμeiθN is a continuous, 2π -periodic function from
R to J1+(HS ) with Fourier coefficients

μ(d) ≡
∫ 2π

0
μ(θ) e−iθd dθ

2π
.

By (2.5), one has μ(d) ∈ J (d)

1 (HS ) and hence

μk−1 ≡ 1

k

k−1∑

j=0

(
j∑

d=−j

μ(d)eiθd

)

∈
⊕

|d|≤k−1

J (d)

1 (HS ).

By Fejér’s integral formula (see e.g., [51])

μk−1 =
∫ π

0
Fk(θ)(μ(θ) + μ(−θ))dθ,

where

Fk(θ) ≡ 1

2πk

sin2(kθ/2)

sin2(θ/2)
,

is Fejér’s kernel. Since Fk ≥ 0, it follows that μk ≥ 0. Finally, from

μk − μ =
∫ π

0
Fk(θ)(μ(θ) + μ(−θ) − 2μ)dθ,

we obtain the estimate

‖μk − μ‖1 ≤
∫ π

0
Fk(θ)‖μ(θ) + μ(−θ) − 2μ‖1 dθ,

whose right hand side vanishes as k → ∞ by Fejér’s convergence theorem (see the proof of
Theorem 13.32 in [51]). �

3. In the fully resonant, non-degenerate case we start with an arbitrary state μ and intro-
duce a cutoff by means of the orthogonal projections

P≤n ≡
n∑

j=1

Pj .
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Setting μ≤n ≡ P≤nμP≤n, using the decomposition into a finite sum of finite dimensional
blocks

μ≤n =
n⊕

k,p=1

( np+1−nk−1⊕

d=np−nk+1+1

μ(k,p,d)

)

,

and proceeding as in the simply resonant case we obtain

lim
N→∞

1

N

N∑

n=0

(
Ln

β(μ≤n)
)
(A) =

n∑

j=1

μ(j,j)(I ) ρ
(j)β∗

S (A). (4.20)

Since limn→∞ μ≤n = μ in J1(HS ) and
∑∞

j=1 μ(j,j)(I ) = μ(I) = 1, (4.20) extends to μ,
which proves (3.6).

4. The last assertion of Theorem 3.3 is a direct consequence of Lemma 4.6.

4.8.2 Proof of Theorem 3.4

When H(k)
S is finite dimensional, one can say more. By Lemma 4.6 the spectrum of L(k,k)

β

consists in a simple eigenvalue 1 with eigenvector ρ
(k)β∗

S and finitely many eigenvalues
located in a disk {z ∈ C | |z| ≤ R} of radius R < 1. This implies that

‖Ln
β(μ) − ρ

(k)β∗
S ‖1 ≤ Cke−αkn,

for some positive constants Ck , αk and all state μ � ρ
(k)β∗

S . Thus ρ
(k)β∗

S is (exponentially)
mixing.

4.9 Proof of Theorem 4.4

Theorem 4.4 resembles the von Neumann mean ergodic theorem. However, the latter holds
in full generality only for contractions on reflexive Banach spaces, which is not the case
of J1(H). To bypass this problem, we shall work in a Hilbert space representation.

Let M = B(H) denote the von Neumann algebra of observables on H and (K,π,�) be
the GNS representation of M associated to the invariant state ρstat (see e.g., [12]). On the
dense subspace K0 ≡ π(M)� ⊂ K we define the map

M : π(A)� �→ π(φ∗(A))�, (4.21)

where φ∗ acts on M and is the dual map of φ. The operator M implements the map φ∗ in
the GNS representation. The following lemma is rather general. It actually holds as soon as
the initial map satisfies the Kadison-Schwarz inequality (4.22) (e.g. if it is a 2-positive map)
and the reference state is invariant [1].

Lemma 4.8 M extends to a contraction on K.

Proof The map φ∗ is a completely positive map. Hence it satisfies the Kadison-Schwarz
inequality (see e.g. [39])

φ∗(A∗A) ≥ φ∗(A)∗φ∗(A), (4.22)
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for all A ∈ B(H). In particular we have, for any A ∈ B(H),

‖M π(A)�‖2 = 〈�|π(φ∗(A)∗φ∗(A))�〉
= ρstat

(
φ∗(A)∗φ∗(A)

)

≤ ρstat(φ
∗(A∗A))

= ρstat(A
∗A)

= ‖π(A)�‖2,

where we have used that ρstat is an invariant state to get the 4th line. The operator M thus
defines a contraction on K0 and hence extends to a contraction on K. �

Let ρ be any normal state. Then there exists � ∈ K such that ρ(A) = 〈�|π(A)�〉 (see
e.g. [12, 45]). It is therefore sufficient to prove that for any normalized vector � ∈ K, and
any observable A ∈ M,

lim
N→∞

1

N

N∑

n=1

〈�|π(φ∗n(A))�〉 = 〈�|π(A)�〉. (4.23)

Moreover, since ρstat is faithful, the vector � is also cyclic for the commutant algebra π(M)′.
We may therefore prove (4.23) only for vectors of the form � = B ′� where B ′ ∈ π(M)′.
For such vectors, we have

〈�|π(φ∗n(A))�〉 = 〈B ′∗B ′�|π(φ∗n(A))�〉
= 〈B ′∗B ′�|Mnπ(A)�〉. (4.24)

Since M is a contraction on the Hilbert space K, the von Neumann mean ergodic theorem
asserts that

s-lim
N→∞

1

N

N∑

n=1

Mn = P,

where P is the projection onto Ker(M − I ) along Ran(M − I ) = Ker(M∗ − I )⊥.

Lemma 4.9 Ker(M∗ − I ) = C� .

Proof Clearly, � ∈ Ker(M∗ − I ). Conversely, let � ∈ K such that M∗� = �. Consider the
linear functional ω : M � A �→ 〈�|π(A)�〉 ∈ C. It is easy to see that ω is normal on M.
Hence, there exists X ∈ J1(H) such that ω(A) = Tr(XA). Moreover, for any A ∈ M

Tr(XA) = 〈�|π(A)�〉
= 〈M∗�|π(A)�〉
= 〈�|Mπ(A)�〉
= 〈�|π(φ∗(A))�〉
= Tr(X φ∗(A))

= Tr(φ(X)A).
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Thus, X is a trace class operator invariant for φ. Therefore there exists λ ∈ C such that
X = λρstat and we have for any A ∈ M,

〈�|π(A)�〉 = λ〈�|π(A)�〉.

Since � is cyclic for π(M) this proves that � ∈ C� . �

Using the above lemma, and since M� = � , the von Neumann mean ergodic theorem
asserts that

s-lim
N→∞

1

N

N∑

n=1

Mn = |�〉〈�|.

Together with (4.24), we get, using the fact that � = B ′� is a normalized vector,

lim
N→∞

1

N

N∑

n=1

〈�|π(φ∗n(A))�〉 = 〈B ′∗B ′�|�〉 〈�|π(A)�〉

= 〈�|π(A)�〉,

which concludes the proof.

4.10 The Resonance Condition

Assertions 1, 2 and 3 of Lemma 3.2 are elementary and their proof is left to the reader. To
prove assertion 4 we consider the conditions for consecutive Rabi resonances.

In the perfectly tuned case η = 0, the only possible consecutive resonances are 0 and 1.
Indeed, if n > 0 then n and n + 1 are resonances iff ξn = p2 and ξ(n + 1) = q2 for positive
integers p and q . It follows that

√
n

n + 1
= p

q
,

which contradicts the irrationality of the square root on the left hand side.
For η > 0, the conditions for consecutive resonances 0 ≤ n < n + 1 ≤ m < m + 1 are

n = 0 or ξn + η = p2, ξ(n + 1) + η = q2,

ξm + η = p′2, ξ(m + 1) + η = q ′2,

for positive integers p,p′, q, q ′. It easily follows that ξ = q ′2 − p′2 and η = p′2 − ξm from
which we conclude that ξ and η must be integers and η a quadratic residue modulo ξ .

Remark Degenerate systems exist, as the following examples show: N(720,241) = {1,2}
and N(840,1) = {1,52}, hence D(720,241) = {1} and D(840,1) = {51}. Indeed on has

720 + 241 = 312, 2 · 720 + 241 = 412, 3 · 720 + 241 = 492,

as well as

840 + 1 = 292, 2 · 840 + 1 = 412, 52 · 840 + 1 = 2092, 53 · 840 + 1 = 2112.
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We do not know of an example where D(ξ, η) contains more than one element. Even though
it is quite easy to compute D(ξ, η) for given ξ and η, the problem of characterizing the set
of integers ξ , η such that D(ξ, η) is non-trivial is extremely difficult. In the special case
m − n = 1 the consecutive resonances condition leads to the Diophantine system

ξ = q2 − p2 = r2 − q2, η = p2 − nξ,

which contains the subsystem

q2 − ξ = p2, q2 + ξ = r2,

so that p2, q2, r2 are three perfect squares in arithmetic progression. Positive integers ξ for
which this system has at least one solution are called congruent numbers. The problem of
characterizing congruent numbers, the so called congruum problem, has a very long history
and is still an active research area of number theory (see [52] for a recent breakthrough).
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37. Jakšić, V., Ogata, Y., Pillet, C.-A.: The Green-Kubo formula for locally interacting fermionic open sys-

tems. Ann. H. Poincaré 8, 1013 (2007)
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